• If this is your first visit, be sure to check out the FAQ by clicking the link above. You may have to register before you can post: click the register link above to proceed. To start viewing messages, select the forum that you want to visit from the selection below.


No announcement yet.

Skunk Works Reveals SR-71 Successor Plan

  • Filter
  • Time
  • Show
Clear All
new posts

  • Skunk Works Reveals SR-71 Successor Plan

    Lockheed gives us a whiff of the SR-72, the Mach Six capable replacement spy plane that will eventually replace the long retired SR-71.

    Mach Six equals 3958.8 mph at operational altitude or 5806 feet per second. Yikes...


    Skunk Works Reveals SR-71 Successor Plan

    Aviation Week & Space Technology
    Guy Norris

    Guy Norris (Los Angeles)
    Fri, 2013-11-01 13:00
    Integrated propulsion breakthrough key to Skunk Works' hypersonic SR-72 concept

    Ever since Lockheed's unsurpassed SR-71 Blackbird was retired from U.S. Air Force service almost two decades ago, the perennial question has been: Will it ever be succeeded by a new-generation, higher-speed aircraft and, if so, when?
    That is, until now. After years of silence on the subject, Lockheed Martin's Skunk Works has revealed exclusively to AW&ST details of long-running plans for what it describes as an affordable hypersonic intelligence, surveillance and reconnaissance (ISR) and strike platform that could enter development in demonstrator form as soon as 2018. Dubbed the SR-72, the twin-engine aircraft is designed for a Mach 6 cruise, around twice the speed of its forebear, and will have the optional capability to strike targets.
    Guided by the U.S. Air Force's long-term hypersonic road map, the SR-72 is designed to fill what are perceived by defense planners as growing gaps in coverage of fast-reaction intelligence by the plethora of satellites, subsonic manned and unmanned platforms meant to replace the SR-71. Potentially dangerous and increasingly mobile threats are emerging in areas of denied or contested airspace, in countries with sophisticated air defenses and detailed knowledge of satellite movements.

    A vehicle penetrating at high altitude and Mach 6, a speed viewed by Lockheed Martin as the “sweet spot” for practical air-breathing hypersonics, is expected to survive where even stealthy, advanced subsonic or supersonic aircraft and unmanned vehicles might not. Moreover, an armed ISR platform would also have the ability to strike targets before they could hide.

    Although there has been evidence to suggest that work on various classified successors to the SR-71, or some of its roles, has been attempted, none of the tantalizing signs have materialized into anything substantial. Outside of the black world, this has always been relatively easy to explain. Though few question the compelling military imperative for high speed ISR capability, the astronomical development costs have made the notion a virtual nonstarter.

    But now Lockheed Martin believes it has the answer. “The Skunk Works has been working with Aerojet Rocketdyne for the past seven years to develop a method to integrate an off-the-shelf turbine with a scramjet to power the aircraft from standstill to Mach 6 plus,” says Brad Leland, portfolio manager for air-breathing hypersonic technologies. “Our approach builds on HTV-3X, but this extends a lot beyond that and addresses the one key technical issue that remained on that program: the high-speed turbine engine,” he adds, referring to the U.S. Air Force/Defense Advanced Research Projects Agency (Darpa) reusable hypersonic demonstrator canceled in 2008.

    The concept of a reusable hypersonic vehicle was an outgrowth of Darpa's Falcon program, which included development of small launch vehicles, common aero vehicles (CAV) and a hypersonic cruise vehicle (HCV). As structural and aerodynamic technologies for both the CAV and HCV needed testing, Lockheed Martin was funded to develop a series of unpowered hypersonic test vehicles (HTV).

    In the midst of these developments, as part of a refocus on space in 2004, NASA canceled almost all hypersonic research, including work on the X-43C combined-cycle propulsion demonstrator. The Darpa HTV effort was therefore extended to include a third HTV, the powered HTV-3X, which was to take off from a runway on turbojet power, accelerate to Mach 6 using a scramjet and return to land.

    Despite never progressing to what Leland describes as a planned HTV-3X follow-on demonstrator that “never was,” called the Blackswift, the conceptual design work led to “several key accomplishments which we didn't advertise too much,” he notes. “It produced an aircraft configuration that could controllably take off, accelerate through subsonic, supersonic, transonic and hypersonic speeds. It was controllable and kept the pointy end forward,” adds Leland.

    Fundamental lessons were learned, particularly about flight control systems that could maintain stability through the transonic speed regime. Lockheed Martin's work proved the configuration could “take off without departing,” Leland notes. “We were able to drive down the takeoff speed and keep it stable and controllable. We proved all that in a whole series of wind-tunnel tests.”

    Just as importantly, the Skunk Works design team developed a methodology for integrating a working, practical turbine-based combined cycle (TBCC) propulsion system. “Before that, it was all cartoons,” Leland says. “We actually developed a way of transforming it from a turbojet to a ramjet and back. We did a lot of tests to prove it out, including the first mode-transition demonstration.” The Skunk Works conducted subscale ground tests of the TBCC under the Facet program, which combined a small high-Mach turbojet with a dual-mode ramjet/scramjet, and the two sharing an axisymmetric inlet and nozzle.

    Meanwhile, the U.S. Air Force Research Laboratory's parallel HiSTED (High-Speed Turbine Engine Demonstration) program essentially failed to produce a small turbojet capable of speeds up to Mach 4 in a TBCC. “The high-speed turbine engine was the one technical issue remaining. Frankly, they just weren't ready,” recalls Leland. This left the Skunk Work designers with a familiar problem: how to bridge the gap between the Mach 2.5 maximum speed of current-production turbine engines and the Mach 3-3.5 takeover speed of the ramjet/scramjet. “We call it the thrust chasm around Mach 3,” he adds.

    Don’t Miss
    Aviation Week Pilot Report: Lockheed SR-71

    Although further studies were conducted after the demise of the HTV-3X under the follow-on Darpa Mode-Transition program, that fell by the wayside, too, after completion of a TBCC engine model in 2009-10. So, Lockheed Martin and Aerojet Rocketdyne “sat down as two companies and asked ourselves, 'Can we make it work? What are we still missing?'” says Leland. “A Mach 4 turbine is what gets you there, and we've been working with Rocketdyne on this problem for the last seven years.”

    Finally, he says, the two achieved a design breakthrough that will enable the development of a viable hypersonic SR-71 replacement. “We have developed a way to work with an off-the-shelf fighter-class engine like the F100/F110,” notes Leland. The work, which includes modifying the ramjet to adapt to a lower takeover speed, is “the key enabler to make this airplane practical, and to making it both near-term and affordable,” he explains. “Even if the HiSTED engines were successful, and even if Blackswift flew, we'd have had to scale up those tiny turbines, and that would have cost billions.”

    Lockheed will not disclose its chosen method of bridging the thrust chasm. The company funded research and development, and “our approach is proprietary,” says Leland, adding that he cannot go into details. Several concepts are known, however, to be ripe for larger-scale testing, including various pre-cooler methods that mass-inject cooler flow into the compressor to boost performance. Other concepts that augment the engine power include the “hyperburner,” an augmentor that starts as an afterburner and transitions to a ramjet as Mach number increases. Aerojet, which acquired Rocketdyne earlier this year, has also floated the option of a rocket-augmented ejector ramjet as another means of providing seamless propulsion to Mach 6.

    Although details of the proposed thrust-augmentation concept remain under wraps, Leland says a large part of a successfully integrated mode-transition design is the inlet. “That's because you have to keep two compressor systems [ramjet and turbine] working stably. Both will run in parallel,” he adds.

    Lockheed has run scaled tests on components. “The next step would be to put it through a series of tests or critical demonstrations,” Leland says. “We are ready for those critical demonstrations, and we could be ready to do such a demonstration aircraft in 2018. That would be the beginning of building and running complete critical demonstrations. As of now, there are no technologies to be invented. We are ready to proceed—the only thing holding us back is the perception that [hypersonics] is always expensive, large and exotic.”

    The 2018 time line is determined by the potential schedule for the high-speed strike weapon (HSSW), a U.S. hypersonic missile program taking shape under the Air Force and Darpa (see page 36). “We can do critical demonstrations between now and then, but we don't believe it will be until HSSW flies and puts to bed any questions about this technology, and whether we can we truly make these, that the confidence will be there.” In spite of the recent success of demonstration efforts, such as the X-51A Waverider, Leland observes that “hypersonics still has a bit of a giggle factor.”

    The timing also dovetails with the Air Force hypersonic road map, which calls for efforts to support development of a hypersonic strike weapon by 2020 and a penetrating, regional ISR aircraft by 2030 (AW&ST Nov. 26, 2012, p. 40). Key requirements for the high-speed ISR/strike aircraft is the ability to survive a “day without space”—communication and navigation satellites—and to be able to penetrate denied areas. With a TBCC propulsion system, the Air Force has pushed for increasingly greater speeds since defining Mach 4 at initial planning meetings in December 2010. The latest requirements are thought to be at least a Mach 5-plus cruise speed and operation from a conventional runway.

    The path to the SR-72 would begin with an optionally piloted flight research vehicle (FRV), measuring around 60 ft. long and powered by a single, but full-scale, propulsion flowpath. “The demonstrator is about the size of the F-22, single-engined and could fly for several minutes at Mach 6,” says Leland. The outline plan for the operational vehicle, the SR-72, is a twin-engine unmanned aircraft over 100 ft. long (see artist's concept on page 20). “It will be about the size of the SR-71 and have the same range, but have twice the speed,” he adds. The FRV would start in 2018 and fly in 2023. “We would be ready to launch the SR-72 shortly after and could be in service by 2030,” Leland says.

    According to Al Romig, Skunk Works engineering and advanced systems vice president, “speed is the new stealth.” This is perhaps just as well, given the inherent challenges involved in reducing the signature of hypersonic vehicles. With large engine inlets and aerodynamic requirements overriding most considerations, the SR-72 concept shows little in the way of stealthy planform alignment. Although the surfaces could be coated with radar-absorbing material, the requirement for thermal protection along sharp leading edges is likely to be a complicating factor. Like the HTV-3X, the vehicle may also feature hot metallic leading edges and a “hot/warm” metallic primary structure designed to handle the high thermal flux loads.

    The deep nacelles, mounted close inboard, indicate the “over-under combined cycle” engine configuration outlined for the HTV-3X, as well as integrated inward-turning turbo-ramjet inlets. “One of the differences with this demonstrator compared to the HTV-3X is that with that, we were limited to small turbines with a low-drag design,” Leland says. “With fighter engines, we accelerate much more briskly. It's a significant improvement in adding margins. It is also very important [that] you have a common inlet and nozzle because of the significant amount of spillage drag in the inlet and the base drag in the nozzle.”

    Aerodynamically, the forebody appears to be shaped for inlet compression at high speed, but without the characteristic stepped “wave-rider” configuration of the X-51A. “We are not advocates of wave riders,” Leland says. “We found that, in order for a wave rider to pay off, you have to be at cruise and be burning most of your fuel at cruise. But these designs burn most fuel as they accelerate, so you want an efficient vehicle that gets you to cruise. You end up with a vehicle that is hard to take off and land, has little fuel volume and high transonic drag.”

    The planform is characterized by chines that blend into a sharply swept delta extending back roughly halfway along the hump-backed fuselage. The chine and delta are likely designed to provide increased directional stability as well as a larger amount of lift at high cruise speeds. Outboard of the engine inlets, the leading-edge angle abruptly aligns with the fuselage before the wing extends into a trapezoid. The angle of the cranked wing would provide vortex lift to assist with low-speed flight.

    The SR-72 is being designed with strike capability in mind. “We would envision a role with over-flight ISR, as well as missiles,” Leland says. Being launched from a Mach 6 platform, the weapons would not require a booster, significantly reducing weight. The higher speed of the SR-72 would also give it the ability to detect and strike more agile targets. “Even with the SR-71, at Mach 3, there was still time to notify that the plane was coming, but at Mach 6, there is no reaction time to hide a mobile target. It is unavoidable ISR,” he adds. Lockheed envisages that once the FRV has completed its baseline demonstrator role, it could become a testbed for developing high-speed ISR technologies and supporting tests of the SR-72's weapons set, avionics and downlink systems.

    “It is time to acknowledge the existence of the SR-72 because of the HSSW going forward,” says Leland. Together with the strategic “pivot to the Pacific,” the concept of high-speed ISR is “starting to gain traction,” he notes. “According to the hypersonic road map, the path to the aircraft is through the missile, so now it is time to get the critical demonstration going.” These would test individual elements of the propulsion system, which would then be integrated for the full-scale FRV evaluation.

    “We have been continuing to invest company funds, and we are kind of at a point where the next steps would require large-scale testing, which would significantly increase the level of investment we've had to make to-date. Between Darpa and the Air Force, it would be highly likely they'd have to fund the next steps,” Leland says. The FRV will also give the Skunk Works a better idea on overall development costs, he adds.

    As for rumors of an existing high-speed ISR aircraft, Leland is dismissive. “It's been almost 20 years since the SR-71 was retired. If there was a replacement, they've been hiding it pretty well,” he says.

    "There are only two things we should fight for. One is the defense of our homes and the other is the Bill of Rights." - Maj. Gen. Smedley Butler, USMC

    "The Constitution of most of our states (and of the United States) assert that all power is inherent in the people; that they may exercise it by themselves; that it is their right and duty to be at all times armed." - Thomas Jefferson

  • #2
    Another article.


    Skunk Works Hints At SR-72 Demonstrator Progress

    Jun 6, 2017 Guy Norris

    Aerospace Daily & Defense Report

    DENVER, Colorado
    Four years after revealing plans to develop a Mach 6 strike and reconnaissance aircraft, Lockheed Martin says hypersonic technologies are now sufficiently mature to enable progress towards a flight demonstrator.

    The company’s secretive Skunk Works unit has been working since at least the early 2000s on the basic building blocks for an operational hypersonic vehicle and in 2013 revealed to Aviation Week it was developing a scaled demonstrator for the SR-72, a proposed successor to the U.S. Air Force’s long-retired Mach 3 SR-71 Blackbird spy plane. However, details on any subsequent progress have been scarce since this initial plan was unveiled.

    SR-72 concept
    “We’ve been saying hypersonics is two years away for the last 20 years, but all I can say is the technology is mature and we, along with Darpa and the services, are working hard to get that capability into the hands of our warfighters as soon as possible,” says Rob Weiss, Lockheed Martin’s executive vice president and general manager for Advanced Development Programs.

    Speaking to Aviation Week on the sidelines at the AIAA Aviation 2017 forum here, Weiss cautions, “I can’t give you any timelines or any specifics on the capabilities. It is all very sensitive. Some of our adversaries are moving along these lines pretty quickly and it is important we stay quiet about what is going on. We can acknowledge the general capability that’s out there, but any program specifics are off limits.”

    However, Weiss hints that work on a combined cycle propulsion system and other key advances needed for a viable hypersonic vehicle are reaching readiness levels sufficient for incorporation into some form of demonstrator. Following critical ground demonstrator tests from 2013 through 2017, Lockheed Martin is believed to be on track to begin development of an optionally piloted flight research vehicle (FRV) starting as early as next year. The FRV is expected to be around the same size as an F-22 and powered by a full-scale, combined cycle engine.

    While no specific details have been revealed, it is known that Lockheed Martin and Aerojet Rocketdyne have been teamed since 2006 on work to integrate an off-the-shelf turbine with a scramjet to power an aircraft with a combined cycle propulsion system from standstill to Mach 6 plus. The development built on work begun earlier under the Air Force/Darpa HTV-3X reusable hypersonic demonstrator, which was cancelled in 2008 but went a step further to integrate a high-speed turbine engine. The HTV-3X concept was an outgrowth of Darpa’s Falcon program, which included development of small launch vehicles, common aero vehicles and a hypersonic cruise vehicle.

    “The combined cycle work is still occurring and obviously a big breakthrough in the air-breathing side of hypersonics is the propulsion system,” Weiss adds. “So this is not just on combined cycle but on other elements of propulsion system.”

    The technology of the “air breather has been matured and work is continuing on those capabilities to demonstrate that they are ready to go and be fielded,” he adds.

    Depending on progress with the FTV, which would fly in the early 2020s, Lockheed Martin has previously said the follow-on step would be development of a full-scale, twin-engine SR-72. Built to roughly the same proportions as the SR-71, the larger vehicle would enter flight test in the late 2020s.

    "There are only two things we should fight for. One is the defense of our homes and the other is the Bill of Rights." - Maj. Gen. Smedley Butler, USMC

    "The Constitution of most of our states (and of the United States) assert that all power is inherent in the people; that they may exercise it by themselves; that it is their right and duty to be at all times armed." - Thomas Jefferson